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A Raman Lidar is an active remote sensing system that uses a laser to excite elastic and 
ineslatic scattering in atmospheric particles and molecules and senses the backscattered 
radiation using a telescope, optical detectors and electronics. In the last few years, the use 
of Raman lidar for providing high spatial and temporal resolution measurements of water 
vapor and aerosols has greatly expanded in various locations around the world. This 
increase in the number or Raman lidar systems is particularly apparent in Europe where 
the European Aerosol Lidar Network (EARLINET) has recently been established. 
However, a consistent, modern treatment of the analytical techniques required to derive 
meteorological quantities from these lidar measurements does not exist. This paper is the 
first of a two-paper sequence providing just such a treatment. This paper provides 
detailed information on how to evaluate the lidar equations for both elastic and inelastic 
scattering including the effects of the temperature sensitivity of Raman scattering. For the 
first time, numerical simulations of the complete Raman spectrum of water vapor are 
used in this evaluation. Other details considered in this treatment include accurate 
calculations of Rayleigh scattering, the influence of temperature dependence on aerosol 
extinction, correction for photon pulse pile up in detectors and the influence of multiple 
scattering on extinction measurements. 
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Abstract 

The intent of this paper and its companion is to compile together the essen- 

tial information required for the analysis of Raman lidar water vapor and aerosol 

data acquired using a single laser wavelength. In this first paper several details 

concerning the evaluation of the lidar equation when measuring Raman scatter- 

ing are considered. These details include the influence of the temperature depen- 

dence of both pure rotational and vibrational-rotational Raman scattering on the 

lidar profile. These are evaluated for the first time using a new form of the lidar 

equation. The results indicate that, for the range of temperatures encountered 

in the troposphere, the magnitude of the temperature dependent effect can reach 

10% or more for narrowband Raman water vapor measurements. Also the calcu- 

lation of atmospheric transmission is examined carefully including the effects of 

depolarization. Different formulations of Rayleigh cross section determination 

commonly used in the lidar field are compared revealing differences up to 5% 

among the formulations. The influence of multiple scattering on the measure- 

ment of aerosol extinction using the Raman lidar technique is considered as are 

several photon pulse-pileup correction thchniques. OCIS # 010.3640,010.3920, 

999.9999 



1 Introduction 

The Raman lidar is well established today as a leading research tool in the study of numerous areas of importance in 

the atmospheric sciences. The Raman lidar has been used to study the passage of frontal systems [l], stratospheric 

aerosols due to volcanic eruptions [2], atmospheric temperature variations in cirrus clouds [3], long term variation of 

water vapor and aerosols at a mid-continental site [4], cloud liquid water [5], cirrus cloud optical [6] and physical [7] 

properties, the influence of thin cirrus clouds on satellite retrievals of water vapor [8], hygroscopic growth of aerosols 

[9], cloud base height detection [ 101, multi-wavelength Raman lidar measurements of aerosols enabling remote char- 

acterization of aerosols [ 1 I] [ 121 and other topics. Recently, numerical simulation has been used to demonstrate that 

an airborne Raman water vapor lidar offers a dramatic increase in temporal and spatial resolution compared to exist- 

ing differential absorption lidars under nighttime conditions [13]. Of all these uses of Raman lidar, perhaps the most 

common has been for the measurement of water vapor and aerosols using either a UV or visible radiation source. Yet, 

despite the availability of several good references describing these measurements of water vapor and aerosols [ 141 [ 151 

[ l ]  [16] [17] [I81 [9] [I91 [4] [20], the essential material needed for analyzing these Raman lidar data has not been 

I compiled together previously. With several new Raman lidars being developed in Europe as a part of the European 

Aerosol Lidar Network (EARLINET) [21] [22] and other activities, it seemed an appropriate time to create such a 

reference. Furthermore, and perhaps more importantly, recent work in numerical simulation of the Raman water vapor 

spectrum now permits the temperature sensitivity of Raman scattering from water vapor to be evaluated as has been 

possible for the rotational Raman scattering from diatomic molecules [23] [24] [25] since the early days of lidar [26] 

and before [27]. 

This first paper in a two-paper sequence considers the details of evaluating the lidar equation including the tem- 
2 



perature sensitivity of Raman scattering. The companion paper [28] (to be referred to as part 11) will then consider 

forming the ratios of lidar signals for the study of water vapor and aerosols. The general organization of this paper is 

as follows. First, as reference material, the traditional lidar equations are presented. Simulations of the temperature 

sensitivity of the Raman water vapor spectrum are then presented offering motivation for the development of a new 

form of the temperature dependent lidar equations. The temperature dependence is then formulated in a new way 

that permits its influence to be confined to a single term that becomes a multiplier of the traditional lidar equations. 

A detailed description of the calculation of atmospheric transmission including extinction both due to molecules and 

aerosols is then presented where the effects of temperature sensitivity are propagated through aerosol extinction equa- 

tions. Other effects that must be accounted for in the evaluation of the lidar equation are multiple scattering and photon 

pulse pileup. These are considered in appendices. 

2 Traditional single scattering Rayleigh-Mie and Raman lidar equations 

Equations will now be presented for Rayleigh-We and Raman Lidars. In order to avoid confusion, a few definitions 

will first be given. The term "Rayleigh scattering" will be used to signify the combination of Cabannes and rotational 

Raman scattering [29] [30]. This recognizes the fact [29] [30] that what Lord Rayleigh [31] E321 actually detected was 

a combination of elastic and rotational Raman scattering. The term "We" scattering will be used to refer to scattering 

by particles of any shape even though the Mie theory [33] only pertains to spherical particles. The term "Rayleigh- 

M e "  lidar will then be used here to refer to systems that measure elastically scattered light from both molecules and 

particles of any shape as well as inelastically scattered pure rotational Raman scattering. Finally, while changes in 

transmission versus wavelength are due mostly to the characteristics of the interference filter or monochromator used 

in a particular lidar channel, other optics in the system can also display wavelength dependent transmission efficiency. 

Therefore, the term "passband" will be used to describe the transmission function of a particular lidar optical channel. 

Now the background-subtracted power received by a detector as a function of range in a Rayleigh-Mie lidar system, 

assuming no multiple scattering and that the received signal is at a single discrete wavelength, can be expressed as 
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r2 

P ( k , r )  = 

P (At, T) is the backscattered power (after subtracting any background contribution due, for example, to skylight 

or detector noise) received at the laser wavelength, AL, as a function of range, r .  OR ( r )  is the Rayleigh-Me channel 

overlap function, PO (A,) is the output power of the laser at the laser wavelength, AL. NR ( r )  is the number density of 

"air" molecules and d u R  ( A t ,  T )  /dR is the Rayleigh backscatter cross section at the laser wavelength. 8 7  ( A L ,  r )  

is the backscatter coefficient at the laser wavelength and at range T due to Mie scattering. E ( A t )  is the total lidar 

receiver optical efficiency at the laser wavelength and includes factors such as the reflectivity of the telescope, the 

transmission of conditioning optics, the transmission of any filters and the quantum efficiency of the detector. A is 

the receiver telescope area. The exponential factor gives the two-way atmospheric transmission, where a(At, r )  is 

the total extinction coefficient at the laser wavelength due to scattering and absorption by molecules, particles and any 

other atmospheric constituents such as water droplets or ice crystals as a function of range along the path of the laser 

beam. 

The corresponding single scattering Raman lidar equation for a vibrationally-scattered Raman species X, in its 

traditional form, is given in equation 2 

where now it should be noted that &he atmospheric transmission function includes a term at the laser wavelength, AL, 

for the transmission along the output path and another for the backscattered signal at the wavelength, AX, which has 

been shifted from the laser waveIength due to inelastic Raman scattering by molecular species X .  NX ( r )  is the 

number density of molecular species X that is being excited and d u x  ( A t ,  T )  /d f2  is the pertinent Raman backscatter 

cross section. 
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3 Temperature dependence of the lidar equations 

As stated, equations 1 and 2 assume that the return signal can be considered to be at a discrete wavelength. In the case 

of the Raman signals excited in the visible or near UV by lasers such as the frequency doubled (532.07 nm) or tripled 

Nd:YAG (354.71 nm), the desired signal actually covers an interval that can range from a few tenths of nanometers 

(e. g. the OH-stretch region of water vapor) to a few nanometers (rotational-vibrational spectrum from diatomic 

molecules such as Nz and 0 2 ) .  In the case of the Rayleigh-Mie signal at this wavelength, there is pure rotational 

Raman scattering from nitrogen, oxygen and other molecules that is centered on the laser wavelength and that covers 

a band of a few nanometers as well [34]. 

Therefore, there is Raman scattering to be considered in both the Rayleigh-Mie and Raman signals. The individual 

line strengths in a Raman spectrum are temperature dependent. In general, this temperature dependence should be 

considered when formulating either the Rayleigh-Mie or Raman lidar equations since, if the passband used to make the 

measurements transmits any Raman signals, the intensity of the backscattered signal per molecule may be temperature 

sensitive. This effect has been carefully considered before by Sherlock et. al. [35] who developed temperature 

dependent Raman lidar equations for the water vapor mixing ratio calculations. These earlier efforts accounted for 

the effects of temperature sensitivity in the absolute calibration of a water vapor Raman lidar. However, their Raman 

scattering model did not include the anisotropic part of the water vapor spectrum, whch can now be included due to 

theoretical work that has occured recently [36]. The current ability to simulate the OH-stretch portion of the Raman 

water vapor spectrum including the isotropic and anisotropic components eliminates one of the largest error sources 

present in the absolute calibration of a Raman water vapor lidar that was pursued by Sherlock et. al. [35]. New forms 

of the lidar equations will be derived that permit the temperature effect to be easily propagated through subsequent 

derivations. 

To illustrate the effect of the temperature dependence of Raman scattering, consider the case of the Raman vibra- 

tional signals. The molecules are essentially all in their ground state at atmospheric temperatures as determined by the 

Maxwell-Boltmann distribution. A vibrational Raman scattering event is therefore overwhelrmngly likely to involve a 
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transition from the ground state to the Stokes (higher energy) part of the spectrum. Thus, at atmospheric temperatures, 

the integral across the entire Raman Stokes band will be temperature insensitive (the transition will appear somewhere 

in the spectrum). However, if only a portion of the band is transmitted, there will in general be a temperature depen- 

dence to the transmitted intensity [37], although there are some exceptions to this that will be discussed later. For the 

case of pure rotational Raman scattering, however, the rotational states differ little in energy from the ground state 

so that there is a significant probability that some of the rotational states will be excited at atmospheric temperatures. 

(Considering the N2 molecule, the J = 0 state for pure rotational Raman scattering is approximately lo5 times more 

likely to be excited at T = 290K than is the first vibrational transition.) Thus, the integral of neither the 0 nor the S 

branch of the rotational Raman spectrum is, by itself, temperature independent however the sum of the two is. 

If the lidar system efficiency is constant over the wavelength interval containing a complete Raman feature, either 

vibrational or pure rotational, then there is no temperature sensitivity to the received signals [37]. Also, there can be 

narrow portions of certain Raman spectra that are temperature independent. This exists for example at the isosbestic 

point of liquid water (-3425 cm-') [38] as well as in the spectral vicinity of J = 7,8 for the pure rotational spectra 

of N2 and 0 2  [39]. However, in general, if narrow filters are used in the detection of Raman features, the total lidar 

system efficiency is likely to change as a function of temperature as the strengths of the individual lines in the Raman 

spectrum change [35] imparting a temperature sensitivity to the measurement. 

This temperature sensitivity can be useful for atmospheric measurements. The intensities of rotational and vibrational- 

rotational lines from Nz and 0 2  are well predicted by diatomic molecule line strength models [27] [23]. These models 

have been used to enable atmospheric temperature measurements using Raman lidar [26] [40] [3]. These models will 

be used here to evaluate the temperature sensitivity of the Raman pure rotational and vibrational-rotational N2 and 0 2  

signals for different passband widths and center positions. 

3.1 Raman water vapor simulations 

Water is an asymmetric top molecule that possesses a much more complicated spectrum than does either N2 or 0 2 .  

The numerical simulation of the spectrum from asymmetric top molecules such as water vapor has, in the past, been 
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available to a very limited number of researchers [41] [42] [43] [44]. However, a recent publication by Avila et. al. [36] 

now makes it possible to easily simulate the Raman OH-stretch spectrum for water vapor over a range of temperatures. 

These results permit the anisotropic component of the Raman water vapor spectrum to be included thus permitting the 

full temperature sensitivity of a Raman water vapor lidar system to be evaluated for the first time. 

This new modeling capability has been used to simulate spectra of the Raman OH-stretch region of water vapor at 

two different temperatures. They are shown in figure 1. These spectra have been simulated using 0.5 cm-' resolution 

at 200K and 295K. As temperature increases, the quantum number transitions that are farther from the band origin of 

3657 crn-l (i.e. higher J number) become increasingly more likely to be excited. This implies that for a lidar system 

characterized by a narrow passband, simulaied in the figure using a Gaussian transmission function of -18 cm-' width 

(corresponding to -0.3 nm at -407.5 nm, the location of the water vapor V I  transition when excited by the tripled 

Nd:YAG laser - 354.7 nm) and shown with a dash-dot line, the integrated intensity of the Raman feature across the 

passband shown will be temperature sensitive. It should be mentioned that the atmospheric feature that is typically 

measured by a Raman water vapor lidar is often referred to as the V I  band of water vapor. However, at atmospheric 

temperatures, this portion of the spectrum also includes contributions from ~ 3 ,  which must be considered for accurate 

simulations of the spectra [36]. Contributions from v2 or its overtones are not significant below temperatures of 400 

K [45] [46]. 

The Raman water vapor differential backscatter cross section was determined for temperatures between 200 K 

and 300 K in order to evaluate the temperature sensitivity of the signal transmitted by the passband shown in figure 

1. The integral of the passband centered at 3654 cm-' shown in figure 1 and the Raman spectrum was performed at 

each of the temperatures. The results are plotted in figure 2. For these calculations, the area under the passband was 

normalized to unity. The results shown in figure 2 indicate that there is approximately a 7% change in transmitted 

intensity between 200K and 300K. This implies that there would be an increase in the sensitivity of a narrowband 

water vapor lidar in the upper troposphere, where atmospheric temperatures are colder, compared to low altitudes. 

These results suggest a reformulation of equations 1 and 2 in a manner that makes this temperature dependence 

more explicit. One reformulation has been published previously [35]. In the next section, a new formulation will be 
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presented that permits all the temperature sensitivity of the equation to reside in a single term by which the traditional 

lidar equations can be multiplied. 

4 Temperature dependent lidar equations 

4.1 Rayleigh-Mie lidar equation 

The background-subtracted Rayleigh-Mie lidar equation, analogous to equation 1, but containing the temperature 

dependence of rotational Raman scattering explicitly, is given below 

P (AAR, r )  is the background-subtracted, received power for the passband AAR, which contains the combined 

Rayleigh (Cabannes and rotational Raman) and m e  signals, as a function of range. This is the single scattering lidar 

equation in a form which accounts for the possibility that the lidar system optical efficiency, E (A’) , may change 

over the range of wavelengths AXE, the wavelength range over which there is significant tranmission by the lidar 

system. The subscript R is used to refer to the Rayleigh-Mie signal. It should be noted here that the laser bandwidth is 

implicitly assumed to be negligibly small. This is a good approximation when using Nd:YAG lasers with bandwidth 

-1 cm-’ since narrowband interference filters that are used in Raman lidar studes are more than an order of magnitude 

wider than this. But XeF excimer lasers, for example, are known to possess an output spectrum covering -2 nm around 

its nominal emission wavelength of 351.1 nm [37]. In such a case an integral over the wavelengths covered by the 

laser output spectrum would be required in equation1 for completeness. 

The Rayleigh signal consists of a narrow elastically scattered signal at the laser wavelength (Cabannes scatter- 

ing) along with inelastic (frequency-shifted) pure rotational lines, due primarily to N 2  and 0 2 ,  on both sides of the 
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Cabannes feature. For practical purposes, the rotational spectrum may be described by quantum numbers up to ap- 

proximately 30 [47], which corresponds to a wavelength range of a few nanometers when excited in the UV or visible 

region. In order to measure this spectrum, a range of wavelengths AXR is sampled by the lidar system. It is possible 

that the lidar system transmission efficiency will change over t h s  wavelength range. The notation daR (A’, T ,  T )  /dR, 

which includes the explicit wavelength temperature dependences, is thus used for the differential backscatter cross sec- 

tion for the combined effects of Rayleigh and pure rotational Raman scattering. This formulation allows the influence 

of the changing intensity of the rotational Raman lines as a function of wavelength and temperature to be quantified. 

These changes can introduce a temperature sensitivity to the measured Rayleigh signal. Calculations of the rotational 

Raman line intensities of these diatomic molecules as a function of temperature [27] [23] coupled with knowledge of 

the lidar system transmission characteristics are needed to evaluate the temperature dependence of equation 3. Pure 

rotational scattering from other molecules such as carbon dioxide and water vapor [48] also exist but at such small 

levels as to be insignificant for the present purposes. 

Aerosols in the atmosphere are much heavier than molecules. The Doppler broadening of the Mie signal due to 

aerosols will therefore be much less than that for molecules. Because of this, the Mie signal from aerosols has a 

narrower spectral width than the elastic scattering from molecules. Thus, for the passband widths considered here, 

the single wavelength notations used in the traditional lidar equation for ,f3? (AL, r )  , the aerosol backscatter coeffi- 

cient, and [ (A,) ,the total receiver system efficiency at the laser wavelength, are still appropriate in the temperature 

dependent form of the equation. 

4.2 Raman lidar equation 

The temperature dependent equation for the signal from a vibrationally-excited Raman species X is 



i 
I 
I 
I 

where now AX,y refers to the passband over which the Raman vibrational signal is detected. Notice here the lack of the 

aerosol backscatter term ( XL, r )  ( XL) since only inelastically scattered radiation due to molecular interactions 

is present in this signal. A temperature dependent function will now be introduced that will permit equations 3 and 4 to 

be expressed in a more straightforward manner. This temperature dependent function simplifies previous formulations 

[35] and will pennit the influence of temperature dependence to be easily propagated through the traditional Raman 

lidar formulas [28]. 

4.3 The function F' (T )  

I Consider the case of the Raman scattered signal from water vapor expressed using equation 4 by replacing X by H. 
I 
I 

I The integral over AXH may be expressed as 

So that FH (2') becomes 

A new function FH(T)  has been introduced which carries all the temperature dependence of the lidar equation. It 

contains the effects of any changes in the system transmission efficiency, (A) , for wavelengths other than AH within 

the passband A X H .  E ( A H )  is the transmission efficiency at XH,where it is assumed that this is the maximum value 

of the transmission function over the interval AAH. If this is not the case, then the appropriate term here would be 

emu (AXH). The notation d a H  (T)  /dR is used to indicate the total Raman backscatter cross section for water vapor 

at the stimulating wavelength. For either the tripled Nd:YAG (354.7 nm) or the XeF excimer laser (35 1 nm) this value 

is approximately 6.2 x m2sr-' [34] and, at atmospheric temperatures, is essentially constant with temperature. 

In a typical lidar system, transmission changes that occur within the interval AXH are determined primarily by the 

interference filter itself with smaller changes due to other optics such as dichroic beamsplitters. Although the trans- 

mission function that describes the passband of a lidar system is due to the characteristics of all optics that intercept the 
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received signal, the interference filter by itself typically determines the majority of the transmission variation within 

the spectral band of interest. Because of this, in practice it may be more convenient to evaluate 4 X as a product of 

interference filter transmission, determined using a spectro-photometer device, and the transmission of the remaining 

( ') 

optics determined through the use of, for example, a calibrated lamp source or through atmospheric modeling [35]. 

The product F , ( T ) W  may be viewed as the effective molecular cross section that is consistent with the use of 

a monochromatic optical efficiency term, < (A,) , in the lidar equation. This will permit the temperature dependence 

to be expressed as a simple multiplier of the normal Raman lidar equation. The situation is not so simple in the 

RayIeigh-Mie lidar equation as will be shown in section 4.5. 

Data such as presented in figure 1 may now be used to illustrate the calculation of FH (T )  for the case of a water 

vapor measurement using the 18 cm-l (0.3 nm at 407.5 nm) full width at half maximum (FWHM) passband also 

shown in the figure. The function FH (T)  given in equation 6 may be determined by dividing the values shown in 

figure 2 by the product the total backscatter cross section daH ( T )  / d o  (since figure 2 was generated using a peak 

lidar system transmission of 1.0). The results in Table 1 indicate that the effective cross section will be between 

90% and 96% of the full Raman water vapor OH-stretch cross section over the range of temperatures considered. By 

contrast, the effective cross section changes by less than 1% when using a 120 cm-' passband for the water vapor 

measurement. Similar calculations can be done for the Rayleigh (including the pure rotational Raman contribution) 

and vibrational-rotational Raman signals from diatomic molecules [27] [23] [37]. Those results are also displayed in 

Table 1 for passband widths in wavenumbers that correspond to 0.3 nm and 2 nm for the various signals excited at 

354.7 nm. All passbands are assumed to be centered on their respective spectra. As shown in the table, the percentage 

change in transmission between 200 K and 300 K for each of these cases is as follows: Rayleigh 24 cm-l filter: 

0.09%, Rayleigh 160 cm-I filter: 0.2% vibrational-rotational 0 2  21 (142) cm-l filter: 1.3% (2.4%), vibrational- 

rotational N2 20 (134) cm-l filter: 0.4% (1.6%). These calculations illustrate that the temperature dependence of 

Raman scattering can be a significant effect for vibrational-rotational Raman lidar measurements. For the Rayleigh- 

M e  lidar, these effects change the results of the non-temperature dependent equation given in 1 by less than 1 %. Table 

2 can be used to determine the corresponding passbands for doubled Nd:YAG (532.07 nm) excitation. For example, to 
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span 50 cm-'of the oxygen feature when excited at 354.7 nm requires a filter of -0.7 nm whereas spanning the same 

wavenumber range when excited at 532.07 nm would require a filter width of - 1.7 nm. 

Table 1 displays Fx calculated for bandwidths that correspond to 0.3 and 2.0 nm when excited at 354.7 nm where 

the passband is assumed centered on the spectrum. It is interesting to consider other passband widths for the Rayleigh 

and three Raman signals. Figure 3 displays the percentage change in F x ,  or equivalently transmitted intensity, between 

200K and 300K ( I  (200K) / I  (300K) x 100) as a function of passband width. The maximum percentage change in 

transmitted Rayleigh signal is -0.33% for a passband width of -95 cm-' (-1.2 nm at 354.7 and -2.8 nm at 532 nm). 

There are much larger changes in the Raman signals. In particular, the temperature effect increases strongly in the 

water vapor channel as the passband width decreases. For example, the ratio of transmitted intensities changes by more 

than 10% between 200 K and 300 K for a passband width less than -12 cm-l (-0.2 nm at 407.5 nm). By contrast the 

temperature sensitivity of the diatomic molecules 0 2  and Nz decreases for passband widths less than -75 cm-' (-1 

nm at 375.4 nm and -2.5 nm at 580.4 nm) and -100 cm-' (-1.5 nm at 386.7 and -3.7 nm at 607.8 nm), respectively, 

where peak percentage changes of 3.3% and 1.8% occur, respectively. This reflects the fact that, for measurements of 

Raman vibrational spectra from diatomic molecules such as nitrogen and oxygen, as a passband that is centered on 

the q-branch of the Raman feature becomes more narrow, increasingly fewer of the vibrational-rotational lines will be 

transmitted thus reducing the temperature dependent effect. 

Table 1 and figure 3 reveal a stronger temperature sensitivity for the water vapor signal than the other Raman 

signals. This results from the more complex, non-symmetric nature of the water vapor spectrum. It is interesting to 

consider the effect of different combinations of water vapor passband width and center location on the percentage 

change in transmitted intensity between 200K and 300K. Figure 4 shows the ratio of transmitted intensity for water 

vapor passbands with FWHM up to 50 cm-l(-l nm at 407.5 nm) and central locations varying between 3649 and 3656 

cm-' (407.45 nm and 407.56 nm). This figure reveals that the ratio of transmitted intensities is strongly dependent 

on the exact center location for the water vapor passband. For example, the transmitted intensity of a 18 cm-' 

(-0.3 nm) passband centered at 3656 cm-' (407.56 nm) would change by -8% between 200 K and 300 K. If this 

passband is determined primarily by an interference filter, then tilting the filter by -1 degree (assuming a filter effective 
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index of refraction of -1.5) 1491 to center it at 3649 cm-l (407.43 nm) would essentially eliminate the temperature 

sensitivity. The total range of passband center location plotted in figure 3 is only 1.2 A for excitation at 354.7 nm. This 

indicates that spectral transmission data with accuracy of -0.1A are needed to assess the temperature dependence of 

very narrowband water vapor measurements with confidence. 

4.4 Temperature dependent functions versus altitude 

As an illustration of how to apply the temperature corrections, the profiIes of F ~ ( r ) , F , v ( r ) ,  Fo(r) and FH(T)  

have been evaluated assuming the U.S. Standard Atmosphere [50] temperature profile and filter widths in cm-' 

that correspond to 0.3 nm and 2.0 nm for excitation at 354.7 nm. The results are presented in figure 5. Again, 

F x  ( T )  dax ( T )  /do quantifies the effective cross section for molecule X due to changes in transmission over the 

passband. The narrower passbands transmit less of the rotational or vibrational-rotational Raman lines and thus less of 

the total cross section. In the case of 0 2 ,  the fraction of total cross section that is present in the vibrational-rotational 

lines is larger than for Nz and thus, for comparable passband widths, Fo(r)  has a smaller value than FN(T). 

4.5 . New formulation of the single scattering Lidar equations containing temperature 

sensitivity 

Using simplified formulations of the temperature sensitivity as in equation 6, the single-scattering Rayleigh-Mie and 

Raman lidar equations can now be expressed as follows 
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where Py"' (AL, r )  = N R  ( r )  d o R  ( r )  /dR and daR (n) /do is the full Rayleigh cross section including the effects 

of rotational Raman scattering, the passband peak transmissions are given by the efficiency terms 5' (Ax). Notice 

that in the Rayleigh-Mie equation, the temperature dependent term FR(T ( r ) )  multiplies only /37"' (XL, r )  and not 

/3Fr (XL, r )  since only the molecular cross section exhibits the temperature dependence considered here. These 

forms of the lidar equations will be used in the derivations to come after carefully considering the calculation of the 

transmission terms in the lidar equations. 

4.6 The atmospheric transmission function 

The atmospheric transmission function for the Raman lidar equation, exp[- j { a ( X ~ ,  r ' )  + a(Xx, r ' ) } d r ' ] ,  accounts 

for the fact that photons are transmitted into the atmosphere at the laser wavelength, XL, and return at the Raman 

shifted wavelength, Ax, for Raman species X. (The Rayleigh-Mie case is obtained simply by setting X = L.) Since 

0 

the atmospheric extinction is different at these wavelengths, the transmission factor must account for this. The extinc- 

tion that occurs at a certain wavelength is, in general, due to both scattering and absorption from both aerosols and 

molecules in the atmosphere. The total extinction coefficient is therefore given by aerosol and molecular contributions 



In this equation, a ( A ,  T )  is the total extinction at wavelength X and range T ,  a,,, (T-) is the extinction due to aerosol 

scattering and absorption, Ni ( T )  is the molecular number density of the ith scattereringhbsorbing molecular species, 

a, (A) is the total scattering cross section for the ith molecular species and 7, (A) is the absorption cross section for the 

ith molecular species. M is the total number of the different molecular species being considered. The use of a XeCl 

excimer laser (-308 nm) as output source requires the use of 9 due to significant ozone absorption of the outgoing beam 

in both the troposphere and stratosphere [51]. For various other choices of output wavelength, molecular absorption 

is usually negligible. For example, a Raman lidar using a UV laser such as a XeF excimer (351 nm) or a frequency- 

tripled Nd:YAG (355 nm), the wavelength range of the return signals is approximately 350 - 410 nm, a region of 

the spectrum where molecular absorption is negligible [52]. The fundamental wavelength from the doubled Nd:YAG 

(-532 nm) and the Raman shifted wavelengths for oxygen (-580 nm) and nitrogen (-608 nm) also are not absorbed 

significantly below the stratosphere. However, measurements at these wavelengths through the stratopheric ozone layer 

are attenuated due to ozone by approximately 2-4% (tropospheric ozone absorption is negligible at these wavelengths 

due to the much lower abundance of ozone in the troposphere than the stratosphere). The Raman shifted wavelength for 

water vapor when excited at -532 nm is -661 nm. Stratospheric ozone also absorbs by -1-2% here as well, but there is 

also weak absorption due to water vapor. For the standard tropical atmosphere of water vapor [50], absorption through 

the entire atmospheric column is -1%. For drier atmospheres the absorption will be less. Therefore, for Rayleigh-Mie 

or Raman measurements of oxygen, nitrogen and water vapor using a XeF excimer or tripled Nd:YAG lasers and for 

Rayleigh-Mie and Raman measurements of oxygen and nitrogen below the stratosphere using the doubled Nd:YAG 

laser, the molecular component of the atmospheric extinction coefficient a( A, r )  is due only to scattering by the various 

molecules in the atmosphere and the following equation for the extinction coefficient applies 

Typical Rayleigh scattering formulas provide a composite cross section for the collection of molecules that make 

up normal air. Using this fact to re-express the equation yields 
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a ( A ,  .) = a a e r  (.) + Nair (.> gair (A) (1 1) 

for the atmospheric extinction when absorption is not an issue. Equation 9 should be used to account for molecular 

absorption for the other Raman lidar measurements discussed here: 1) when using a 308 nm laser source, 2) for mea- 

surements through the stratospheric ozone layer using a -350 nm source, and 3) for Raman water vapor measurements 

using a doubled Nd:YAG (532 nm). 

5 Atmospheric extinction due to molecules and aerosols 

In order to evaluate the atmospheric transmission function, we need to evaluate separately the contributions due to 

molecular and aerosol extinction. The calculation of molecular extinction and optical depth has been thoroughly 

discussed elsewhere including the effects of the dispersion of polarization [53] [54]. However, since some of the 

common formulas for Rayleigh extinction that are typically used in the lidar field [34] either do not account for 

depolarization at all or neglect its dispersion with wavelength, the calculation of molecular extinction will first be 

reviewed here after which the calculation of aerosol extinction will be discussed. 

5.1 Molecular extinction and backscattering including the effects of polarization 

In the absence of absorption, extinction of the laser beam is entirely due to scattering. Equations 12 through 14 are 

used to calculate the cross section per molecule for Rayleigh scattering [30] [53] [54] . 

2 24r3 (n: (A) - 1) 
a ( A )  = FK (A> 

A"? (n: + 2)2 

5791817 
238.0185 - (I /A )2  

+ 
57.362 - (1/A)2 

n, (A) = 

where 0 (A) is the cross section per molecule at the wavelength A, n, (A) is the empirical formula [55] for the real 
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refractive index for dry air at standard temperature and pressure (STP) at wavelengths greater than 230 nm [54], N, is 

the molecular number density for air at STP (2.547 x lOI9 ~ m - ~ ) ,  FK (A) is the King factor shown defined in terms 

of, p i ,  the total (Rayleigh + rotational Raman) depolarization from a natural light source [30], the value of which is 

determined by the magnitudes of the parallel and perpendicular components of the dynamic polarizability [53] QII (A) 

and QI (A) as follows: 

all (A) - Ql (A) 
011 (A) + 2al (A) 

€ ( A )  =; 3 

For example, p i  (A) changes from 0.0357 to 0.0273 over the range 250-1000 nm. So it clear that the pertinent 

depolarization quantity p i  has a wavelength dependence that influences the Rayleigh scattering cross section. Also, 

due to the random distribution of molecules in the atmosphere, the cross section given by equation 12 is valid regardless 

of laser polarization. 

5.1.1 Comparison of different formulations of Rayleigh cross section 

The dispersion of depolarization must be included for an accurate determination of Rayleigh cross section as a function 

of wavelength [54]. Some calculations of Rayleigh cross section either neglect the dispersion of depolarization or omit 

the King factor completely [34]. Figure 6 compares these different methods of calculating the Rayleigh cross section. 

Figure 6 compares two approximate methods of calculating the Rayleigh cross section with the full calculation using 

equation 12. The first approximate calculation uses equation 12 but with a constant value for depolarization, chosen 

here to be 0.0279 [29], the second method neglects the King factor completely. As the figure shows including the 

dispersion of polarization changes the Rayleigh cross section by more than 1% across the wavelength range of 250 

- 800 nm when compared with the wavelength independent depolarization assumption. Neglecting the King factor 

yields a Rayleigh optical depth approximately 5% larger than actual. 

The total Rayleigh volume-scattering coefficient (in units of, for example, Icrn-l) as a function of wavelength at 

standard temperature and pressure (S") is now given by [54] 
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For any pressure, temperature or number density, the Rayleigh volume scattering coefficient may be determined 

1 from [54] 

where p,, P, and T, are calculated at STP. In the absence of absorption, molecular extinction is determined completely 

by Rayleigh scattering and thus the molecular component of the atmospheric extinction coefficient a ( A ,  T ) ,  from 

equation 11, is given by equation 18. The notation for the volume scattering coefficient, pmo' (A, T ) ,  is not to be 

confused with the previously defined backscatter coefficient, By' (A, r )  . It is convenient at this point to describe the 

calculation of the Rayleigh backscatter coefficient. 

5.1.2 Calculation of Rayleigh backscatter coefficient 

To calculate the Rayleigh backscatter coefficient, the following formulation will be used [54] 

where Pro' (8 ,  A, T )  is the Rayleigh angular volume-scattering coefficient (in units of, for example, km-lsr-'). 

The backscattering case, of such special importance to lidar, has been given its own notation of Pzo' (8, A, r )  = 

pF0' (A, r ) .  Other than the 47r normalization factor, the right hand side of this equation consists of two terms: 1) 

Pmo' (A, r )  , the Rayleigh volume scattering coefficient given by equation 18 and 2) P R ~ ~  (e, pk(A)) , the scattering 

amplitude as a function of angle, which is equal to [56] 

where p i  (A) is the Rayleigh depolarization factor defined earlier. The Rayleigh backscattering coefficientis obtained 

simply by setting 8 = 7r in the equations 19 and 20. The formulation of the Rayleigh scattering phase function given 
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in equation 20 is from Goody [56] and is in fact equivalent to the form given in Chandrasekhar [57] and Bucholtz 

[54]. However, Goody’s form is expressed directly in terms of the depolarization of natural light, pi(X),that appears 

in the King factor as opposed to a term that Chandrasekhar and Bucholtz refer to as y(X) = pk(X) / (2  -&(A)), which 

is equivalent to the term p t (X )  defined by Young [29] as the depolarization of incident light polarized normal to the 

scattering plane. 

It is interesting to compare the forhulation of Rayleigh backscattering coefficient in equation 19 to a simpler 

numerical version that is common in the lidar literature but that does not account for the effects of the dispersion of 

depolarization. The simpler equation is [34] 

where N is the molecular number density in units of ~ m - ~ .  Figure 7 shows the ratio of equations 21 and 19 over a 

range of 250 to 1000 nm where the latter equation has been evaluated at an angle of T .  

The two methods differ by more than 10% for wavelengths shorter than approximately 280 nm and by more than 

5 %  for wavelengths greater than approximately 800 nm. In the range of 350 nm, where the popular Raman laser 

sources of the tripled Nd:YAG and the XeF excimer have their output, the simpler formulation is -3% smaller than 

the full treatment given in equation 19 whereas in the vicinity of 530 nm, the simpler treatment is now -3% larger. 

These are significant differences implying that the complete formulation of Rayleigh backscatter coefficient given by 

equation 19 should be used instead of simpler formulations such as that in equation 21. 

5.2 Aerosol extinction 

To compute aerosol extinction analytically generally requires knowledge of the exact nature of the aerosols that are 

responsible for the extinction. Given the size distribution of the aerosols as a function of range and both real and 

imaginary indices of refraction, a calculation using Mie theory can be performed that will estimate the extinction as a 

function of range. This can be done very accurately for non-precipitating cloud water droplets, which are spherical, 

provided that multiple scattering is not significant. But for other aerosols, which can have irregular shapes that are 
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usually not known, calculations of aerosol scattering properties using hhe theory are approximations at best. 

However, with the Raman lidar, another approach to the calculation of aerosol extinction is possible. The Raman 

vibrational [58] (or the pure rotational [39]) signal from nitrogen or oxygen may be used to calculate the round-trip 

atmospheric extinction , which for vibrational Raman scattering occurs at the laser wavelength for the outgoing path 

and at the Raman shfted wavelength for the return path. 

5.2.1 Development of the extinction equations including the effects of temperature sensitivity 

Aerosol extinction can be quantified in a direct manner by using either the Raman nitrogen or oxygen signals [S8] [9]. 

At the ultra-violet and visible wavelengths of the lasers typically used in Raman lidar systems, atmospheric absorption 

is negligible so aerosol extinction is determined by the total amount of light scattered into all directions. This is 

the integral of the aerosol scattering intensity as a function of angle (the phase function) and quantifies an important 

radiative property of the aerosols. The equation for calcuIating aerosol extinction using the temperature dependent 

Raman lidar data can be derived along similar lines as in Ansmann et. al. [58]. Assuming the use of the Raman 

nitrogen signal for the calculation of aerosol extinction, the result is 

where ~,,,(XL, r )  is the extinction due to aerosols on the outgoing path at the laser wavelength, aaeT ( AN r )  is the 

aerosol extinction on the return path at the Raman shfted wavelength, a m o l ( X ~ ,  r )  is the molecular extinction at the 

laser wavelength, and a m o l ( X ~ ,  r )  is the molecular extinction at the Raman shifted wavelength. 

Equation 22 is the fundamental Raman lidar aerosol extinction equation. It is identical to the results of Ansmann 

et. al. [58] except for the inclusion of the temperature dependent factor FN (T (r ) ) .  The atmospheric number density 

is required to evaluate this equation both for the calculation of the molecular extinction terms (through the use of 

equation 18) as well as to evaluate the number density N,v ( r )  . In the lowest -100 Icm of the atmosphere the total 
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atmospheric density is proportional to NN ( r )  and thus gives identical results in the equation. The sensitivity of Raman 

measurements of aerosol extinction to changes in atmospheric temperature and density variations has been studied by 

Ansmann et. al. [58] .  Their conclusion was that the use of a standard atmospheric model for calculating molecular 

extinction can introduce significant errors in aerosol extinction when the aerosol loading is very low. Therefore the 

more accurate molecular number density profile available from a radiosonde is recommended under such conditions. 

Equation 22 indicates that the fundamental quantity that can be evaluated using a Raman lidar is the two-way 

extinction that occurs along the round-trip path from the laser to a scattering element and back to the telescope. In 

order to translate this into one-way extinction at a single wavelength, knowledge of the wavelength scaling of aerosol 

extinction is needed. The scaling of aerosol extinction may be handled as follows [59] 

where IC ( r )  may vary between approximately 0 and 2 depending on the nature of the aerosols [9] and is a function 

of range. Using equation 23, the expression for aerosol extinction at the laser wavelength becomes 

An alternate form of this equation, which is preferred since it allows quantities to retain their original statistical 

distributions when determining the numerical derivative [60] is 

distributed. The use of equation 25 permits all quantities being regressed to retain their original statistical distributions, 

which are assumed to be Gaussian or near-Gaussian. This equation, therefore, is preferred to equation 24 for evaluating 

aerosol extinction since the ratio of two Gaussian distributed quantities is not Gaussian. 
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In principle, equation 25 can be used over the entire range of the lidar profile to evaluate the aerosol extinction. 

However, in practice it is quite difficult to quantify the lidar channel overlap function sufficiently well to apply equation 

25 in the overlap region. This is due to the fact that the derivative of the natural logarithm of the overlap must be 

evaluated. In the overlap region, the signal may be changing very rapidly so that small errors in quantifying the 

overlap function can introduce large errors in the derived aerosol extinction. For this reason calculations of aerosol 

extinction are typically performed on the portion of the lidar profile that is fully overlapped, i.e. where ON ( r )  = 1. 

It should be noted as well that since the extinction will typically be evaluated over relatively short ranges (i.e. dr will 

in general be on the order of 100 meters) that the factor FN(T ( r ) )  will have little influence since, as can be seen in 

figure 5 ,  its change is insignificant over such short ranges. Tlus is the case in the normal atmospheric since FN(T ( r ) )  

is not a strong function of range. For measurements of extinction in a smoke stack or in the vicinity of flames this 

would not be the case, however, and the factor FN(T ( T ) )  could change over short ranges and influence the extinction 

calculation. 

Before evaluating equation 25 for the case of tropospheric aerosols, the possible influence of multiple scattering on 

these measurements must be addressed. Tropospheric aerosols, excluding cloud particles, range in size from less than 

0.1 ,urn in radius up to 10 ,urn and larger in some cases [61]. The multiple scattering due to aerosols in this size range 

is studied in appendix 1. The simulations performed there indicate that multiple scattering is likely to be negligible 

for boundary layer extinction measurements. However, for elevated desert dust layers multiple scattering may have a 

small but noticeable effect on the calculation of extinction. 

5.2.2 Evaluation of the extinction equation 

The evaluation of equation 25 appears to be rather straightforward once all the required quantities are known. However, 

the derivative term actually presents subtle and quite important difficulties relating to the proper statistical evaluation 

of a derivative (or slope) in the case of a lidar profile, which is not a continuous function. The statistical rules pertaining 

to determining the best mathematical model for fitting a set of data can be applied with good result [60] both for the 

evaluation of the extinction and the error in extinction. 
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5.2.3 Example aerosol extinction profile 

An example of aerosol extinction computed from data acquired by the NASMGSFC Scanning Raman Lidar (SRL) 

during the third Convection and Moisture Experiment (CAMEX-3) [8] on the night of August 26, 1998 at Andros 

Island, Bahamas is shown in figure 8. At the time of this field campaign, the SRL used a XeF excimer laser (351 

nm), 0.76 m telescope and high and low range photomultiplier tubes for each of the Rayleigh-Mie, oxygen, nitrogen 

and water vapor signals [5]. The results shown were obtained from the raw Raman lidar measurement of molecular 

nitrogen by first correcting for the finite photon counting bandwidth, subtracting the background and then applying 

equation 25. For reference, various photon counting correction techniques are reviewed in appendix 2. 

The aerosol extinction profiles shown use a 20-minute summation of data. The molecular extinction coefficients 

were derived using equation 18 and the atmospheric density that was measured by a radiosonde launched that night. In 

the figure, the influence of the aerosol scaling parameter, k (known as the Angstrom coefficient), is also tested. Figure 

8 shows a typical aerosol profile from Andros Island during the CAMEX-3 campaign. The values of extinction below 

-0.25 k m  are influenced by the lidar overlap function. Changing the Angstrom coefficient (considered constant with 

range) from k=O to k=2 increases the aerosol extinction values by approximately 8%. It has the same effect on the 

aerosol optical depth between 0.25 and 3 k m  which may be calculated by simply integrating the extinction curve over 

this altitude range. Using k=l, the aerosol optical thickness (at 351 nm) between 0.25 and 3 k m  was approximately 

0.13 for this example. 

The uncertainty in the Angstrom coefficient can be reduced by using coincident sun photometer data, although 

the sun photometer only provides a column average value while the lidar is measuring the profile of aerosols. The 

uncertainty in the Angstrom coefficient determined using a sun photometer is a function of the wavelength interval 

used to determine the coefficient, the aerosol optical depth and the quality of the calibration of the instrument in use. In 

general, for instruments in the NASMGSFC AERONET (http://aeronet.gsfc.nasa.gov:8080/), uncertainty in Angstrom 

coefficient will be less than k0.2 for the 340-380 nm wavelength interval if the aerosol optical thickness is greater than 

0.4 [62] [63]. It is interesting to note that due to the existence of an AERONET reference standard at NASNGSFC, 
23 



a 10 .2  uncertainty in Angstrom coefficient is obtained for measurements made there when aerosol optical depths are 

greater than 0.2 [64]. It is estimated that uncertainty in the value of IC ( r )  contributes an error of Iess than 5% to the 

aerosol extinction measurements shown in figure 8. 

The aerosol optical depth of -0.13 in the current example implies that approximately 12% of the light was scattered 

from the beam due to aerosols % 0.88). These measured values of aerosol extinction in the W can be used to 

estimate the horizontal visibility experienced by ground-based observers. The "visual range" may be estimated from 

the empirical formula [34] 

550 

where a is the total atmospheric extinction coefficient and R, is the visual range. At visible wavelengths and under 

most aerosol loading conditions, aerosol extinction is the dominant source of atmospheric attenuation [34]. For ex- 

ample, near the surface in figure 8, aerosol extinction at 351 nm was approximately 0.1 km-l. Scaling this value 

to 550 nm using equation 23 and k = 1 yields an aerosol extinction at 550 nm of approximately 0.06 km-l. By 

contrast, molecular extinction under standard temperature and pressure conditions, using equation 17 is approximately 

0.01 ICm-l. Using these values in equation 26, yields a value of visual range in excess of 50 km. The aerosol loading 

present on August 26 was typical for Andros Island during CAMEX-3 implying that aerosol optical depths were low 

and visibilities were generally very good. 

This example demonstrates that the aerosol optical depth is an important parameter than influences visibility and 

thus radiative transfer. As demonstrated above, the optical depth can be determined by integrating the aerosol extinc- 

tion profile. When calculating the optical depth in this manner, however, errors at all levels in the extinction profile 

must be added together to determine the error budget for the optical depth calculation. This can result in a larger 

uncertainty in the determination of the optical depth than the more straightforward calculation wluch will now be 

presented. 
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5.2.4 Aerosol optical depth 

Integrating both sides of equation 22 over the range {TI  7-2 )  yields the two way aerosol optical depth between T I  and 

1-2 : 

The use of equation 27 to calculate aerosol optical depth eliminates the need to perform a derivative of the lidar 

signal. This simplifies calculations when all that is needed is the mean value of extinction through a layer such as is 

required to calculate optical depth of the layer. 

The error in the aerosol optical depth has both random and systematic components. The systematic part of the error 

is in general difficult to evaluate since it requires knowledge of the absolute value of the quantity being measured. 

However, because the values of density and temperature that one uses in the evaluation of equation 27 would likely 

come from a single model profile or radiosonde measurement, there is likely to be a systematic component to the 

errors in FN (T(T)), NN ( T ) ,  and a m o l ( A ~ ,  T ) .  It is clear from equation 27 that the systematic component of errors 

in FN (T ( r ) )  and NN ( T )  will tend to cancel due to the ratio inside of the logarithm. However, a systematic error 

in density of a certain percentage would have the same percentage effect on the calculated molecular optical depth. 

As mentioned earlier, this effect was considered by Ansmann et. al. [58] where they concluded that radiosonde 

measurements of density are preferred over model values in the evaluation of equation 27 for small aerosol optical 

depths. 

The random component of the error in optical depth may be calculated using standard error propagation formulas 

[65] and is given by 
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where, to be clear, g ~ e r o s o l o D  refers to the variance of the two-way aerosol optical depth and ~ ~ o l e c u l a r O D  refers 

to the variance of the one-way molecular optical depth. If FN(T ( r ) )  varies little over the range of the optical depth 

calculations, such as in the normal atmosphere, it should contribute at most a small amount to the total error. In 

a smoke stack or in flames, this may not be the case. Thus, FN(T ( r ) )  can be considered negligible over ranges 

where the temperature does not change appreciably. Therefore, if the temperature changes slowly over the range being 

considered and, furthermore, if the calculation is done outside the region where the overlap function is an influence, 

the error equation reduces to 

The error in the radiosonde density data will determine the error budget for three of the terms above. Also, for a 

lidar system such as the SRL that uses photon counting data acquisition, Poisson statistics applies so that the variance 

in a measurement equals the accumulated number of counts of the measurement itself. Putting these together yields 

where RadErr indicates the fractional random error in the radiosonde density measurement. 

The equations are now developed for the two-way particle optical depth. If one desires to determine the one- 

way particle optical depth, it is necessary to use equation 23 to handle the wavelength scaling. The appropriate error 

equation is this case is approximately one-half of equation 30 depending on the value of IC (T-) used in equation 23. This 

completes the description of numerous calculations required to evaluate the lidar equation. Now the meteorological 

quantities of water vapor mixing ratio, aerosol scattering ratio and aerosol backscatter coefficient may be derived by 

considering ratios of Raman lidar signals. This will be covered in part I1 [28] of this paper. 
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6 Summary 

As the number of Raman water vapor and aerosol lidar systems in use in the world has been on the increase recently, 

particularly in Europe, it seemed an appropriate time to undertake an updated evaluation of the traditional Raman lidar 

water vapor and aerosol technique including effects such as the temperature dependence of Raman scattering. Toward 

that end, this paper is part one of a thorough two-part review of the traditional, single-laser-wavelength, Raman lidar 

technique for measuring atmospheric water vapor and aerosols. In this paper, a detailed study of the evaluation of 

both the Rayleigh-Mie and Raman lidar equations has been presented including the effect of the temperature sensitiv- 

ity of both rotational and vibrational-rotational Raman scattering. New forms of the Rayleigh-Mie and Raman lidar 

equations were developed that pennit the temperature sensitivity of these equations to be considered as a multiplica- 

tive factor times the traditional lidar equations. These temperature dependent factors were calculated for Rayleigh, 

Raman nitrogen, oxygen and water vapor signals using different passband widths and center positions. The Raman 

water vapor simulations were performed using recent results that permit the full OH-stretch mode of water vapor to be 

simulated. These calculations indicated a greater than 6% change in transmitted intensity for the water vapor signal 

between 200 K and 300 K for a 0.3 nm filter centered at 3654 cm-l. Furthermore, the temperature dependence of the 

water vapor signal for a narrow passband is highly sensitive to the exact filter spectral location. The calculations also 

indicated that the influence of the temperature sensitivity of the pure rotational Raman lines on the Rayleigh signal is 

generally much less than 1% while the Raman nitrogen can change by nearly 2% and that of oxygen by more than 3% 

over the same temperature range. The calculation of atmospheric transmission was discussed in detail. Differences 

up to 5% were found in calculations of molecular extinction due to the effects of the dispersion of depolarization. A 

simple formulation of Rayleigh backscattering that is commonly used in the lidar field was found to differ significantly 

from the full calculations that are suggested here. Temperature dependent aerosol extinction and optical depth equa- 

tions were presented. The influence of the wavelength scaling of aerosols was considered in these calculations. In 

appendices, the influence of multiple scattering was considered for boundary layer and elevated aerosol layers. It was 

found that multiple scattering due to elevated dust layers can significantly effect the calculation of extinction using 
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certain lidar configurations. Correction techniques for photon counting pulse pileup were reviewed. In part ll[28], the 

temperature dependent equations developed here will be used to derive new forms of the ratio equations for Raman 

lidar water vapor and aerosol analysis. 
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1 Appendix: The Influence of Multiple Scattering on Tropospheric Aerosol 

Extinction Measurements 

For light scattered by particles of the same dimension or larger than the wavelength of the incoming light, as the 

particle size increases, forward-scattered light is confined to an increasingly narrow angular cone. This makes it more 

likely that a photon that is scattered forward in a first scattering event will interact with another particle in a second 

scattering event and be backscattered within the field of view of the lidar receiver. 

The lidar equations formulated earlier were for single scattering only. Therefore, in the case of Scattering involving 

large particles where multiple scattering is more likely to occur, the use of the single scattering equations can lead to 

errors in the calculated quantities. Most of the quantities derived from Raman lidar data are based on ratios of lidar 

signals so that the multiple scattering influence tends to cancel in the ratio [66]. Examples of these quantities are the 

water vapor mixing ratio, liquid water mixing ratio, aerosol scattering ratio and the aerosol backscatter coefficient. 

However, aerosol extinction and optical depth are calculated using only a single lidar signal (e.g. Raman nitrogen) 

which, in the case of large particles, can be significantly influenced by multiple scattering. 

The influence of multiple scattering on lidar signals is related to the optical depth of the scattering medium, the 
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size of particles that are doing the scattering, the range to the scattering volume, the laser divergence and the telescope 

field of view. The formulation developed by Eloranta [67] will be used here to study this influence assuming 1 mrad 

laser divergence and 2 mrad telescope field of view. A description of the equations used here has been published 

recently for the case of Raman lidar measurements of cirrus cloud multiple scattering [SI. It is important to note that 

the modeling of multiple scattering in the case of the molecular (as opposed to the Rayleigh-Mie) signal is aided by 

the slowly varying nature of the molecular phase function in the backscatter direction [67]. By contrast, to simulate 

multiple scattering for the Rayleigh-We signal requires a knowledge of the profile of particle size since the Mie phase 

function changes rapidly near the exact backward direction. 

1.1 Multiple scattering by tropospheric aerosols - boundary layer and elevated dust layers 

Six synthetic profiles of aerosol extinction were created to study the influence of multiple scattering on the measure- 

ment of extinction using Raman lidar and are shown in figure 9. The boundary layer extinction profiles have aerosol 

optical depths of 0.375,0.75 and 1.5, respectively, to simulate low, medium and high aerosol loading. The extinction 

profiles simulating elevated dust layers have optical depths of 0.1, 0.2, and 0.5. 

Aerosols can range in size from much less than 1 micron (rural aerosols) to more than 10 microns (desert dust). 

Second order multiple scattering was calculated for the three boundary layer extinction profiles shown in figure 9 

assuming that the aerosol particles were of constant radius throughout the profile where the radii chosen were 0.5 

and 2.0 microns. The results are shown in figure 10 with the 0.5 micron calculations on the left and the 2.0 micron 

calculations on the right. The plot of the 2.0 micron results also includes the fractional error in the extinction as a 

function of range. 

The multiple scattering due to 0.5 micron aerosols is considerably smaller than that for the 2 micron aerosol. 

Considering the 2 micron results shown on the right, it can be seen that at the peak of the high aerosol optical thickness 

case, the ratio of second order scattering to single scattering is less than 3%. The error in extinction due to second 

order multiple scattering is also plotted for the high optical depth case. The negative error is largest with a value of 

--1.5% at the surface where the aerosol layer is first encountered. It then increases toward zero at an altitude of -1.5 
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km where the slope of the P2/Pl curve is zero. Above this altitude until the top of the aerosol layer, the error is 

positive reaching a maximum positive value of -1.5% at the top of the layer. Since the optical depth is just the integral 

of extinction, the error in optical depth due to second order multiple scattering will be at most 1.5% as well. Third 

order scattering will be insignificant due to its much lower probability than second order scattering. 

The Air Force Geophysics Lab (AFGL) marine oceanic aerosol model [61] peaks at 0.3 microns and predicts that 

there are only 51% and 1.8% as many particles of radii 0.5 and 2 microns, respectively as at the peak. For particles 

larger than 2 microns, the abundance drops exponentially. Therefore, due to the relative lack of large particles that 

these model calculations predict for tropospheric aerosols and the generally small effect that multiple scattering has on 

the calculation of boundary layer aerosol extinction, multiple scattering is unlikely to present a significant error source 

for boundary layer aerosols. 

The same may not be the case for elevated layers of desert dust, which have been observed at large distances from 

their source regions [68] [69] [70] 1711 and are characterized by preferential population of the coarse mode part of 

the distribution [72]. Keeping other parameters fixed, if the range to the scattering medium is increased the observed 

multiple scattering increases as well. This is due to the fact that a larger geometrical area is observed by a fixed field- 

of-view telescope as the range increases. Therefore one might expect that an elevated layer of aerosols would exhibit 

more multiple scattering than the same layer at lower altitudes. Furthermore, Dubovik et. al. [72] report aerosol mean 

radii of -2.5 4- 0.6 microns for sun photometer measurements of desert dust made over a period of approximately 

2 years in Bahrain. Therefore, to study the possible influence of multiple scattering on extinction measurements of 

elevated desert layers, figure 11 shows multiple scattering calculations for a 1 km thick dust layer between 5 and 6 

km with optical depth of 0.1, 0.25 and 0.5 using the elevated extinction profiles shown in figure 9. The aerosol size 

simulated is 3 microns. Both second and third order multiple scattering were used in these simulations. The error in 

extinction due to multiple scattering is also plotted for the 0.5 optical depth case. The figure shows that the peak ratio 

of multiple scattering to single scattering for the three optical depths is -0.03, 0.07 and 0.14, respectively. The error 

in extinction for the 0.5 optical depth case is maximum and negative with a value of -15% at the base of the aerosol 

layer. The error in extinction for the 0.25 optical depth case (not plotted) is approximately half of that for the 0.5 
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optical depth case or -7% at the base. The error in extinction approaches zero at the top of the elevated layer. Above 

the layer where the influence of multiple scattering can still be seen, the derived aerosol extinction would be non-zero 

where in fact there are no aerosols. Therefore, the error in extinction is essentially infinite. This is an example of the 

phenomenon known as pulse-stretching that can be a significant issue for space-based lidar systems because of the 

enhancement of multiple scattering created by the large distance from the lidar system to the extinguishing layer. The 

difference in the behavior of the error in extinction between the boundary layer cases shown above and the elevated 

layers shown here are due mainly to the different profiles of extinction assumed. The conclusion based on this figure 

is that multiple scattering can become a significant error source in the calculation of extinction in elevated layers of 

desert dust. 

2 Appendix: Photon pileup correction 

Raman lidar systems frequently make use of photon counting data acquisition systems due to the weak nature of 

Raman scattering. For example, all of the data acquired by the SRL during the CAMEX-3 field campaign used photon 

counting electronics. Photon counting electronics have a certain minimum pulse pair resolution time which, in the case 

of the 100 Mhz  DSP Technology units used in the SRL during CAMEX-3, was approximately 10 ns. The maximum 

measurable count rate corresponding to this is 100 M H z .  However, this maximum count rate will be obtained only 

for a perfectly periodic input pulse train. The Raman lidar photon counting signals obey Poisson statistics and thus, 

for a certain mean count rate over a one-minute data acquisition time, the effective countrate for each laser pulse can 

vary significantly. For example, using a 1 p sec binwidth in the photon counters, a 40 M H z  signal would correspond 

to 40 counts in a bin. The Poisson probability distribution for n counts with p mean is given by 

where P (n, p) is the probability of measuring n counts in a time interval where the mean number of counts per time 

interval is p. Figure 12 shows this distribution with mean of 40. From this figure, it is clear that the effective count 
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rate of the signal from each laser pulse can deviate significantly from the 40 M H z  average. Thus, from pulse to pulse, 

there is a varying probability that two pulses may arrive sufficiently closely spaced in time to be seen as a single event 

by the electronics. 

Traditionally, there are two extremes of behavior that counting systems can exhibit. They are referred to as "para- 

lyzable" and "non-paralyzable" [73]. A paralyzable counting system is one that is unable to provide a second output 

pulse unless there is a time interval of at least T between two successive input pulses. If an additional pulse arrives 

during the response time T ,  known as the deadtime, the deadtime of the apparatus is further extended by r. In this way, 

at high count rates, the unit will be unable to respond and will be "paralyzed". Since the fraction of intervals that are 

longer than T is given by e-'Nrrul, the equation which relates the measured and true counting rates for a paralyzable 

counter is [73] 

Nmeasured = NrealedTNTea' 

where Nmeasured is the observed countrate and Nreal is the actual countrate. 

A non-paralyzable counter is one in which the response time r is independent of the arrival of additional counts. In 

other words, a non-paralyzable counting system will asymptotically approach a maximum counting rate as the actual 

countrate increases. The equation describing the relationship of the measured countrate and the true countrate can be 

derived as follows. For an observed countrate of Nmeasvred,  the fraction of time that the counting unit is unable to 

respond to counts is TNmeasured, since each observed count will produce a single deadtime period. Thus the fraction 

of time that the unit is sensitive to counts is 1 - TNmeasured. The measured countrate may then be expressed as [73] 

or 



These two types of counting systems have traditionally been considered extremes of behavior such that the response 

of a real system would lie somewhere in between. The two curves representing the paralyzable and non-paralyzable 

corrections are plotted in figure 13 using T = 10 ns. For reference, a purely linear response is also shown. 

If the countrates are kept low (less than approximately 10-20 M H z  in this example), the two equations give 

similar results. The following example illustrates the use of the non-paralyzable equation. In order to implement any 

count saturation correction scheme, one must determine the resolving time of the electronics. In a 100 M H z  photon 

counting system, one would expect that the resolving time parameter would be approximately 10 n s  as previously 

stated. The resolving time value can be determined empirically from two sets of atmospheric profiles: 1) full strength 

profiles 2) profiles acquired with a 10% neutral density filter in front of all PMTs. The non-paralyzable pulse pileup 

correction is first applied to both the full and reduced-strength signals which then allows the resolving time value to 

be determined for each PMT. Figure 14 shows the ratio of the count-corrected, reduced intensity profiles to the count- 

corrected, full-strength profiles in the high nitrogen channel for resolving times of 8, 10, 12, and 14 ns. To produce 

the ratios shown in the figure, the background must be subtracted from each signal. In addition, the reduced intensity 

and full strength profiles are normalized in order to create a value of the ratio of approximately 1. 

The resolving time that yields curves that are most nearly constant with altitude is the value chosen for the later 

analysis. The value chosen from this figure was 11 ns in good agreement with the anticipated resolving time for 100 

M H z  electronics. Figure 15 results from applying the non-paralyzable pulse pileup correction to the high and low 

channel nitrogen data. (During CAh4EX-3, the SRL used 2 PMTs per return wavelength, one for the high altitude 

measurement and another for the low. Both of these channels operated in the photon counting mode.) The corrected 

and uncorrected data are compared in this figure indicating that only the high channel data are significantly affected 

by the correction. 

The amount of correction depends on the count rate. The count rates in the high channels are much higher than in 

the low channels and thus the correction is greater. In practice, for this 100 M H z  system, count rates below 1 M H t  

are essentially uncorrected and at 10 M H z  the correction amounts to about 11%. The count correction affects the 

high channel nitrogen data up to an altitude of approximately 4 km. Notice in the high channels that the signal is so 
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intense in the fitst kilometer that the detectors are saturated and unable to provide useful photon counting data. 

2.1 Non-linear photon pile-up modeling 

The two traditional models of pulse pile-up described above can only produce a measured count rate that is less than 

the true count rate. However, real photon counting systems are actually able to display both count loss as well as count 

gain. Count gain can result in "super-linear" photon counting behavior; the measured number of counts can increase 

faster than the actual number of signal counts. A significant contribution [74] to the understanding of real photon 

counting systems resulted from a model of the overlapping of photon pulses that allows for both an apparent loss of 

counts as well as an apparent gain of counts. That mathematical model accounts for the fact that various numbers of 

photons that might individually not be counted may add together to exceed the threshold and thus be counted. The 

model developed has the form [74] 

-+ ...I (B.5) 
( 7 d s ) 3  

-k P(3bn4a)  7 hi = s ezp(-Tds)[P(a)  + P( lbnZa)  ( T d S )  -k p ( Z b " 3 a ) F  
( T d s ) 2  

where N is the measured count rate, S is the true count rate, T d  is the system deadtime, P(a) is the probability that 

a single photon will be above the discriminator threshold, P(nb,-,[n+l]a) is the probability that n pulses arriving close 

together will be below the threshold but n+l pulses arriving together will be above the threshold. One of the difficulties 

in implementing equation B.5 is the fact that it is double valued. Since the equation describes a counting system that 

is subject to paralysis, there will be two values of real count rate that can yield the observed measured count rate. In 

the analysis to follow, the correction was limited to the lower count rate regime to avoid this complication. 

The correction using equation B.5 requires both the true count rate, S, and the measured count rate, N. These were 

determined by acquiring atmospheric nitrogen data both at full intensity and with a -1% transmission neutral density 

filter installed. The data acquired using the neutral density filter were considered to be proportional to the true count 

rate since the count rate was reduced sufficiently to minimize the probability of pulse pileup. The transmission of 

the filter was determined by normalizing the full and 1% data at a point where the count rates were low for both of 

these data sets. The 1% data are then divided by the filter transmission determined by this procedure to give the "true" 
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count rate curve, SI in equation B.5. An array of ordered pairs can then be formed of { Nmea,}. This array 

of pairs is the data set which must be fit by the non-linear equation B.5. The general non-linear regression routine in 

Mathematica was used to f i t  this equation to the data. Using two terms in the square brackets of equation B.5, the best 

fit values were T d  = 10.2 ns,  p(a) = 0.616, P(lbnaa) = 0.266. Using three terms for the equation yielded: ‘ r d  = 10.8 

n s ,  p(a) = 0.579, P(lbn2a) = 0.278, P(2bn3a) = 0.074. The resolving time determined using this precedure agrees 

well with the simpler procedure shown in figure 14. 

A strict physical interpretation of these values in terms of the model would indicate that using the 2 (3) term 

expression for equation B.5 that the resolving time was 10.2 (10.8) ns, the probability that a count is registered by 

a single photon exceeding the threshold is approximately 61% (58%), while the probability that a count is registered 

by two closely-spaced photons that would otherwise not be counted is approximately 27% (28%). In the case of the 

three term equation the probability that a count is registered due to three photons adding together is about 7%. The 

coefficients do not add to one, which can perhaps be taken as either an indication of the uncertainty in the results or 

that the physics of the model used to create the equation are not exactly the physics of the counter electronics. The real 

value of this technique is determined by whether it extends the useful count range of the instruments and not whether 

the strict physical interpretation of the results is sensible. 

At this point the goodness of fit of the two- and three-term forms of equation B.5 were compared to see how well 

they reproduced the ”true” data set. The two equations were nearly indistinguishable in this respect. For simplicity, 

then, the two term results were used. In order to assess the performance of the non-linear correction scheme, the same 

set of high channel data shown in figure 15 was analyzed 1) with no correction, 2) with the non-paralyzable correction 

described earlier, 3) with a paralyzable correction, and 4) with the non-linear correction. The results are plotted in 

figure ??. The paralyzable correction is double valued in the same way as the non-linear results discussed above. As 

with the non-linear results, only the low count rate solution is displayed here. 

In the figure, the low channel data can be taken as indicative of the shape of the linear, unsaturated profile because 

the actual count rate for the low channel did not exceed 1 M H z  and the pulse pileup effects are much less than 1% 

at this count rate. For comparison purposes, therefore, the low channel data have been normalized to the high channel 
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profiles. In increasing order of correction, or closeness to the low channel data, the processed nitrogen profiles are: 

raw data, non-paralyzable corrected, paralyzable corrected, and non-linear corrected. The first two of these curves 

are the same as shown in figure 15 but displayed on the left in terms of countrate in H z  and on the right as a ratio 

of the corrected results to the low channel results. The figure reveals that the raw data diverge significantly from 

the low channel results below an altitude of approximately 4 km. The corresponding altitudes (countrates) for the 

non-paralyzable, paralyzable and non-linear corrected results are approximately 2.2 km (7 MHa) ,  1.4 km (20 M H z ) ,  

and 1.2 km (40 M H z ) .  Therefore, the non-linear correction would allow the high channel data to be used to a lower 

altitude than either the non-paralyzable or paralyzable corrected data although the improvement over the paralyzable 

results is relatively small. 

2.2 Photon pileup correction in data processing 

Although the non-linear and paralyzable procedures permit photon counting data to be used at higher count rates 

than the non-paralyzable correction technique, the results of correcting the high-channel data using the simpler non- 

paralyzable approach were sufficient to permit merging of the high channel data with the low channel data at an altitude 

where the low channel is still providing good signal as shown in figure 15. In addition, the non-linear technique can 

fail to converge and, for both the non-linear and paralyzable correction techniques, the low and high solutions may 

not be consistent. This is taken to be due to the inherent difficulty of applying the very large correction to photon 

counting data that is implied through the use of the high solution in either the non-linear or paralyzable approach. Due 

to these considerations, the general photon counting SRL measurements during CAMEX-3 were made such that 1) the 

low channel count rate was low enough at every altitude to require essentially no pulse pileup correction and 2) there 

was a region of overlap between the low and high channels where they were both out of count saturation and could be 

merged reliably. In this way, the simple procedure of the non-paralyzable count correction could be used satisfactorily. 

The results presented in this paper were therefore obtained using the non-paralyzable correction technique. 
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10 Figure Captions 

1. Raman scattering spectrum for the OH-stretch region of the spectrum simulated using a 0.5 cm-l slit width and 

at two temperatures: 200 K and 295 K .  Also shown is a representation of a -18 cm-I (0.3 nm when excited at 

354.7 nm) passband centered at 3654 cm-I that could be used for the detection of the water vapor signal. The 

y-axis is in arbitrary units. 

2. The integral of the Raman differential backscatter cross section and transmission of the passband shown in 

figure 1. The transmitted intensity at 200K is approximately 7% larger than at 300K. 

3. Ratio of transmitted intensities at 200K and 300K for Rayleigh and Raman (water vapor, nitrogen and oxygen) 

passbands for widths up to 300 cm-' (-5 nm for excitation at 354.7 nm). 

4. The ratio of transmitted intensities for water vapor passbands of varying widths and center position where the 

center positions, shown in the legend, are given in units of wavenumbers (cm-l). For reference, a filter width of 

60 cm-lcorresponds to -1 nm for excitation at 354.7. The corresponding wavelengths (nm) of the filter center 

positions when excited at 354.7 nm and 532.07 can be found in table 2 

5. The temperature dependent functions FR (T )  , Fo ( T )  , FN ( T )  , F x  ( T )  that are needed to evaluate the Rayleigh- 

Mie and Raman lidar equations are plotted as a function of altitude assuming the U. S. Standard Atmosphere 

temperature profile. The bandwidths (noted in cm-' in the legend) correspond to 0.3 nm and 2.0 nm when 

excited by 354.7 nm radiation. 

6. Comparison of 3 formulations of total Rayleigh scattering cross section: 1) the full treatment shown in equation 

12 and indicated by p = p(X) in the legend, 2) the same equation but with a constant depolarization value of 

0.0279 [30], and 3) the same equation but neglecting the King factor. Significant differences are produced by 

use of either of the approximate methods. 

7. The ratio of two formulations of the Rayleigh backscatter coefficient, given by equations 21 and 19, is plotted 

from 250 to 1000 nm. The difference between the simple numerical formula and equation 19 increases to more 

than 10% at short wavelengths. 

8. Aerosol extinction (at 351 nm) calculated from a 20 minute average of data from the night of August 26, 1998 

at Andros Island, Bahamas. The sensitivity of the aerosol scaling parameter, IC, is tested here. 

9. Six synthetic aerosol extinction profiles created to test the influence of multiple scattering on measurements 

of aerosol extinction. Three are for use in the simulations of elevated dust layers while the other three are for 

simulation of boundary layer aerosols. The desert dust profiles are referred to as DD(7) where T is the optical 

depth of the layer. The corresponding key for the boundary layer aerosols is BL. 

10.Multiple scattering simulations for the boundary layer aerosol profiles shown in figure 9. Calculations assuming 
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constant size aerosols of 0.5 micron radius are shown on the left and 2.0 microns on the right. The error in 

extinction is plotted for the high optical depth case on the right. 

11 .Multiple scattering simulations for a layer of desert dust between 5 and 6 h. The mean particle size used is 3 

microns and three optical depths are studied 0.1,0.25, and 0.5. The error in extinction is also plotted for the 0.5 

optical depth case. 

12.Probability of measuring n counts for a Poisson process characterized by a mean countrate of 40 counts per unit 

time. 

13.Comparison of paralyzable and non-paralyzable count corrections using a resolving time of 10 nsec. The 

observed count rate of a paralyzable system tends toward zero with increasing true count rate. The observed 

count rate of a non-paralyzable system tends toward the maximum countrate as the real count rate increases. A 

perfect linear system is also represented. 

14.Comparison of photon pulse pileup corrections for a range of resolving time values using a non-paralyzable 

count correction procedure. The resolving time yielding the curve closest to a constant with altitude.is chosen 

for the later processing. For the lugh nitrogen channel shown here, the choice of a resolving time of 11 m e c  

yields a pulse pileup correction that agrees with the low intensity signal to within -1% for altitudes above -3 

km. 

15.Low (left) and high (right) channel nitrogen data are shown with and without the non-paralyzable count correc- 

tion using a value of 11 nsec for the deadtime. The correction is only apparent above approximately 1 M H z  

so that the correction has much more effect on the high channel data. 

16,Comparison of different methods of correcting for effects due to photon pulse pileup. The same nitrogen data 

treated in figure 15 are again analyzed here. The raw data (NoCorr) are shown aIong with non-paralyzable, 

paralyzable and non-linear corrections (NPCorr, ParCorr, NLCorr). The low channel data (Lo), normalized to 

the high count rate (Hz), are also shown as an indication of the true count rate. 
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11 Table Captions 

1. Calculations of the F, factor for various lidar passband widths (FWHM) corresponding to 0.3 nm ("narrow") 

and 2.0 nm ("wide") when excited at 354.7 nm. The water vapor transmission width corresponds to 0.3 nm 

excited at the same wavelength. The percentage change in the effective cross section between 200K and 300K 

is shown for each case as an indication of the temperature sensitivity for tropospheric measurements. Changes 

in the Rayleigh function F R  for a 24 cm"-l wide passbandare after the third decimal place. 

2. Table for converting between passbands expressed in wavenumbers and wavelength at either 354.7 nm or 532.07 

nm. 

3. Conversion table for center position of water vapor passbands. 
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F, for selected passband center and width combinations 

Effective cross section as f(T) 

Passband (vO(crn-'), Av(cm-l)) 200K 220K 240K 260K 280K 

Narrow Rayleigh (0,24) 
Oxygen (1556,21) 
Nitrogen (2331,20) 
Water vapor (3654,18) 

Rayleigh (0,159) 
Oxygen (1556,142) 
Nitrogen (2331,134) 
Water vapor (3654,120) 

Wide Water vapor (3654,120) 

0.970 0.970 0.970 0.970 0.970 
0.749 0.746 0.744 0.742 0.741 
0.851 0.850 0.8493 0.850 0.848 
0.961 0.950 0.938 0.926 0.913 
0.997 0.995 0.993 0.992 0.990 
0.992 0.992 0.991 0.991 0.990 
0.933 0.929 0.924 0.920 0.915 
0.947 0.944 0.940 0.938 0.9345 
0.997 0.995 0.993 0.992 0.990 

300K 

0.970 
0.734 
0.848 
0.900 
0.988 
0.990 
0.91 1 
0.93 1 
0.988 

Percent Change 
( I 2 0 0 ~ ~ 3 0 0 K  100) 

0.1 
1.33 
0.39 
6.7 
0.9 
0.26 
2.42 
1.61 
0.9 
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Passband width conversion table 

1 Excitation wavelength (nm) I 354.7 I 532.07 
" I ,  

Molecule (Acm-') 
Shifted wavelength (nm) 

"Air" (0) 0 2  (1556) N2 (2331) H2O (3654) "Air" (0) I 0 2  (1556) N2 (2331) I H 
354.7 375.4 386.7 407.5 532.07 I 580.1 607.4 I 6( 

Width (cm-l) 
I 

Width (nm) 

25 
50 
100 
150 

Table 2: Table for converting between passbands expressed in wavenumbers and wavelength at either 354.7 nm or 
532.07 nm 

0.31 0.35 0.37 0.42 0.71 0.84 0.92 1. 
0.63 0.70 0.75 0.83 1.42 1.68 1.85 2. 
1.26 1.41 1.50 1.66 2.83 3.37 3.69 4. 
1.89 2.13 2.24 2.49 4.25 5.05 5.54 6. 

Passband 

~. ~ 

200 
250 
300 

3649 
3650 
365 1 
3652 
3653 
3654 
3655 
3656 

2.52 2.82 2.99 3.32 5.61 6.74 7.39 8. 
3.15 3.52 3.74 4.15 7.09 8.42 9.24 1( 
3.77 4.23 4.49 4.98 8.50 10.1 11.08 1: 

center conversion table 
Excitation wavelength (nm) 
354.71 532.07 

Wavelength (nm) 

407.45 660.25 
407.46 660.30 
407.48 660.34 
407.50 660.38 
407.51 660.43 
407.53 660.47 
407.55 660.52 
407.56 660.56 

Table 3: Conversion table for center position of water vapor passbands. 
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